BRAF status and mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 activity indicate sensitivity of melanoma cells to anthrax lethal toxin.

نویسندگان

  • Ralph J Abi-Habib
  • Jeffrey O Urieto
  • Shihui Liu
  • Stephen H Leppla
  • Nicholas S Duesbery
  • Arthur E Frankel
چکیده

Anthrax lethal toxin, composed of protective antigen and lethal factor, was tested for cytotoxicity to human melanoma cell lines and normal human cells. Eleven of 18 melanoma cell lines were sensitive to anthrax lethal toxin (IC(50) < 400 pmol/L) and 10 of these 11 sensitive cell lines carried the V599E BRAF mutation. Most normal cell types (10 of 15) were not sensitive to anthrax lethal toxin and only 5 of 15 normal human cell types were sensitive to anthrax lethal toxin (IC(50) < 400 pmol/L). These cells included monocytes and a subset of endothelial cells. In both melanoma cell lines and normal cells, anthrax toxin receptor expression levels did not correlate with anthrax lethal toxin cytotoxicity. Furthermore, an anthrax toxin receptor-deficient cell line (PR230) did not show any enhanced sensitivity to anthrax lethal toxin when transfected with anthrax toxin receptor. Anthrax lethal toxin toxicity correlated with elevated phosphorylation levels of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 in both melanoma cell lines and normal cells. Anthrax lethal toxin-sensitive melanoma cell lines and normal cells had higher phospho-MEK1/2 levels than anthrax lethal toxin-resistant melanoma cell lines and normal tissue types. U0126, a specific MEK1/2 inhibitor, was not toxic to anthrax lethal toxin-resistant melanoma cell lines but was toxic to 8 of 11 anthrax lethal toxin-sensitive cell lines. These results show that anthrax lethal toxin toxicity correlates with elevated levels of active MEK1/2 pathway but not with anthrax toxin receptor expression levels in both normal and malignant tissues. Anthrax lethal toxin may be a useful therapeutic for melanoma patients, especially those carrying the V599E BRAF mutation with constitutive activation of the mitogen-activated protein kinase pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytotoxicity of the matrix metalloproteinase-activated anthrax lethal toxin is dependent on gelatinase expression and B-RAF status in human melanoma cells.

Anthrax lethal toxin (LeTx) shows potent mitogen-activated protein kinase pathway inhibition and apoptosis in melanoma cells that harbor the activating V600E B-RAF mutation. LeTx is composed of two proteins, protective antigen and lethal factor. Uptake of the toxin into cells is dependent on proteolytic activation of protective antigen by the ubiquitously expressed furin or furin-like proteases...

متن کامل

Anthrax lethal factor-cleavage products of MAPK (mitogen-activated protein kinase) kinases exhibit reduced binding to their cognate MAPKs.

Anthrax lethal toxin is the major cause of death in systemic anthrax. Lethal toxin consists of two proteins: protective antigen and LF (lethal factor). Protective antigen binds to a cell-surface receptor and transports LF into the cytosol. LF is a metalloprotease that targets MKKs [MAPK (mitogen-activated protein kinase) kinases]/MEKs [MAPK/ERK (extracellular-signal-regulated kinase) kinases], ...

متن کامل

Direct inhibition of T-lymphocyte activation by anthrax toxins in vivo.

The causative agent of anthrax, Bacillus anthracis, produces two toxins that contribute in part to its virulence. Lethal toxin is a metalloprotease that cleaves upstream mitogen-activated protein kinase kinases. Edema toxin is a calmodulin-dependent adenylate cyclase. Previous studies demonstrated that the anthrax toxins are important immunomodulators that promote immune evasion of the bacteriu...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 4 9  شماره 

صفحات  -

تاریخ انتشار 2005